論 文

プラズマイオン注入法の計算機シミュレーション

正員 宮川 佳子* 田中 正明** 中舘 博** 中尾 節男* 宮川 草児*

Computer Simulation of Plasma Immersion Ion Implantation and Deposition

Y. Miyagawa*, M. Tanaka**, H. Nakadate**, S. Nakao*, S. Miyagawa*

By using a newly developed simulation program "PEGASUS", plasma behavior was analyzed for the plasma immersion ion implantation and deposition (PIII&D). For plasma analysis of low pressure gas which are used in PIII&D, the software uses a particle in cell (PIC) method for the analysis of electronic and magnetic fields and the motion of charged particles. A Monte Carlo collision method is used for collisions of ions, electrons and neutrals in the plasma, and the dynamic-SASAMAL code is used for the ion-solid surface interactions. Spacial distributions of potential, electron density and ion density together with the ion flux distribution on the target surface were calculated for the case where a negative pulse voltage was applied to a trench shaped target immersed in a high density Ar plasma (10^{10} cm^3) . The time evolution of sheath length obtained by the simulations for a flat plane part of the surface agreed with the analytical result obtained by the Child-Langmuir method. In a bipolar pulse PIII&D system, a positive and a negative pulse voltages are applied alternately to a workpiece without any other external plasma source. Simulation has been conducted for a target immersed in a very low density Ar plasma (10^7 cm^3) to compare the plasma generated by a negative and a positive pulse voltage applied to the target. When a negative pulse voltage is applied to the target, only a weak plasma is generated. In contrast to it, when a positive pulse voltage is applied, a two-order or more intense plasma is generated under the same condition. The plasma behavior around a trench shaped target is also presented.

キーワード:シミュレーションプログラム、プラズマプロセス、プラズマイオン注入、 Keywords: Simulation program, Plasma process, PIII, PBII, PIC-MCC

1.はじめに

プラズマ材料プロセスは急速に発展しつつある技術であ り、その発展の新展開は、超微細電子回路、記憶素子、セ ンサー、太陽光発電パネル、プラズマディスプレー等のフ ラットパネル、光学素子、マイクロマシン、自動車、装飾 品に至るあらゆる分野において極めて重要で、材料開発あ るいは新しい応用分野の開拓に大きく寄与するものと期待 されている。さらにその技術的発展は、将来の産業の発展 のために現在克服すべき環境問題の解決にとって欠くこと の出来ないものである。プラズマ拡散処理、プラズマアシ

 * ペガサスソフトウェア株式会社 〒104-0032 中央区八丁堀 4-2-2 共同ビル 5F PEGASUS Software Inc. 4-2-2, Hachobori, Chuo-ku, Tokyo, 104-0032, Japan スト CVD 及び PVD、プラズマイオン注入技術 (PIII&D) マグネトロンスパッタ技術等のプラズマプロセシングにお いてはプラズマの制御、in-situ プラズマ診断が、最重要の 課題となっている。また、ナノ構造半導体素子へのプラズ マドーピングにおいては注入イオン量測定、低エネルギー イオンの除去等が重要であり、PIIIによる SOI 作成におい ては、境界のはっきりした構造が要求される。これらの要 請から、プラズマプロセシングにおいては、プラズマ内で の原子励起、多種イオン注入、プラズマの安定性、運動エ ネルギー分布の制御、2次電子放出、基板の温度制御、基 板表面の帯電、基板表面からのガス放出の制御など、厳し い条件が課せられる事になる。

プラズマ中の電磁場の空間分布を求め、イオン、電子、中 性原子の動きを解析しプラズマを正確に制御する上で、計 算機シミュレーションは有効である。この目的のために、 筆者らは新らしいシミュレーションプログラムを開発し、 PEGASUS と名付けた。PEGASUS は"<u>P</u> lasma <u>E</u> nhanced materials processing and rarefied <u>GAS</u> dynamics<u>U</u> nified <u>S</u> imulation tools"の頭文字である。PEGASUS は、 NEPTUNE/Sputter[1]という2次元 DC スパッタ蒸着装置

^{*} 産業技術総合研究所 中部センター 基礎素材研究部門 〒463-8560 名古屋市守山区下志段味穴が洞 2266-98 National Institute of Advanced Industrial Science and Technology (AIST chubu) 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, 463-8560 Japan

解析用シミュレーションプログラムを改良したもので、電磁場の解析と荷電粒子の動きの解析には PIC (Particle in Cell)法[2,3]を用い、粒子の衝突の解析にはモンテカルロ衝突(MCC)法[4,5]を、また、イオンと固体表面との相互作用の解析には dynamic-SASAMAL コード[6-8]を用いている。 PEGASUS には多くのモジュールがあり、使用者は支配する場と計算時間を考慮して目的に適したモジュールの組み合わせを選択するようになっている。

プラズマイオン注入法 PIII&D は、複雑形状被加工物表面 への均一なイオン注入、あるいはコーティングのために開 発された技術であるが、多種イオン注入、イオンエネルギ 一分布の制御、容器壁からの2次電子放出、基板加熱等、 加速器を用いたビームラインイオン注入とは異なった問題 を有している。現在、一般に普及しているプラズマイオン 注入法においては、RF あるいは ECR 等、外部プラズマ源 によりプラズマを発生し、その中においた3次元複雑形状 ターゲットに負のパルス電圧を印加して、ターゲット表面 に垂直にイオン注入あるいはコーティングを行おうという ものである。しかしながら、ターゲット表面に到達するイ オンやラジカルの量は、プラズマ源からの距離や、プラズ マ源に対する面の向きによって左右されるため [9]、イオン 注入量や膜厚を均一にする事は困難である。そのため、外 部プラズマ源を用いずにターゲットに印加した負のパルス 電圧によって発生するプラズマを利用することも考えられ る。しかし、そのためには、ガス圧を高くする必要があり、 その結果、シース内でのイオンとガス原子との衝突回数が 増えてイオンエネルギーが低くなる[10]。また、プラズマ発 生のために必要な条件とイオン注入あるいはコーティング

Fig.1.プラズマ容器とタ-ゲットの配置図 Schematic of the simulated system: plasma chamber and target. Inset graph shows the pulse shape of applied voltage on the target.

の条件を独立に変えることができないため、最適な条件に 設定することができない。これに対して、著者らはバイポ ーラパルスを用いる方法を提案してきた[11,12]。この方法 では正のパルス電圧と負のパルス電圧を交互にターゲット に印加する。正パルスによってターゲットの周囲にプラズ マを発生させ、引き続く負パルス印加によりシースを形成 するので、従来の方法と比較して、より複雑形状に対応し たイオン注入やコーティングを行うことが可能であり、ま た、外部プラズマ源を必要としないため、装置構成が簡単 になるという利点を持つ。

バイポーラパルス PIII&D 法の優位性を確認するため、 正及び負のパルス電圧印加によりグロー放電プラズマが発 生する様子を PEGASUS でシミュレートした。PEGASUS は、電子・原子衝突による電離を考慮しているので、この ようなシミュレーションが可能である。

2. 計算方法

PEGASUS では、データの入出力に GUI (Graphic User Interface)を使用している。シミュレーションを始める前、 GUI を用いて荷電粒子と中性粒子の運動の解析に使うモジ ュールを選択する。電磁場の空間分布やその中での荷電粒 子の運動を解析するプラズマ解析用のモジュールとして、 PHM: Plasma Hybrid Module (高密度ガス用)と PIC-MCCM : Particle in Cell + Monte Carlo Collision Module (低密度ガス用)がある。PIC+MCCM では、電磁場中の 荷電粒子の挙動を PIC で解析し、粒子の衝突をモンテカル 口法で解析している。中性粒子挙動解析用のモジュールと して、NMEM: Neutral Momentum Equation Module (高 密度ガス用)と DSMCM: Direct Simulation Monte Carlo Module(低密度ガス用)がある。NMEM は連続体近似が 適用可能な領域(ガス圧[Torr] × 装置の代表長さ[mm] > 5)で、DSMCM はそれ以下の低ガス密度で使用する。プ ラズマと真空容器の壁、あるいはターゲット表面との相互 作用の解析には dynamic-SASAMAL コードが使われてい て、イオン注入による表面組成の変化、損傷、スパッタリ ングによる表面エッチングやスパッタ粒子の放出、あるい はコーティングプロセスの解析[8]を行う。

プラズマイオン注入法 PIII&D は低密度ガスプロセスな ので、そのシミュレーションには PIC-MCC モジュールが 使われる。その計算方法については文献[1]に詳しく述べた のでここでは簡単に述べる。まず、空間内に電荷を持った 粒子を配置し、その電荷をグリッド上に振り分ける。そし て指定された境界条件の下で電位、電界を計算する。磁場 のある場合は、磁場成分も用いて粒子の運動を計算する。 粒子の壁あるいはターゲット表面における挙動:吸着、散 乱、スパッタリング、電子放射なども解析する。電子と中 性粒子の以下の衝突反応も考慮している。

a)	非励起・非電離 e + M	>	M + e
b)	直接電離 e + M	>	$M^{+} + e + e$
c)	間接電離 e + M [*]	>	$M^{+} + e + e$

d) 励起 ------ e+M --> M^{*}+e
ここで、M は中性原子、M^{*}は励起原子、非励起・非電離
は、電荷の移動を伴わない運動エネルギーのみを授受する
衝突である。これらの衝突に対する断面積は、文献[13-16]
の値を用いている。PEGASUS では、これらの電離衝突を

考慮していることから、プラズマの発生過程のシミュレー ションが可能となっている。

Fig.1にシミュレーションを行ったプラズマ容器とター ゲットの配置図を示した。挿入図にはターゲットに印加す る電圧の時間依存性が示してある。シミュレーションは2

Fig.2. Arプラズマ中においたターゲットに負のパルス電圧(最大電圧 -2kV)を印加した場合の電子密度 e (上段)、 イオン密度 Ar⁺¹(中段)、電位(下段)の空間分布の時間依存性

Time evolution of spatial distribution of electron density, ion density, and potential for a minus pulse bias ($V_{max} = -2kV$). Ar gas = 1mTorr, plasma density (t =0) = 10^{10} cm⁻³

Fig.3. Ar プラズマ中においたターゲットに負のパルス電圧を印 加した場合に生じるイオンシース長の時間依存性 Time evolution of sheath lengths. Ar gas =1 mTorr, plasma density = 1x10¹⁰ cm⁻³ solid lines : simulation results. broken lines analytical results obtained by Child-Langmuir method.

Fig.4. プラズマ密度 10^7 cm^3 の場合。 その他の条件はFig.3 と同じ Time evolution of sheath length. Ar gas = 1 mTorr, plasma density = $1 \times 10^7 \text{ cm}^3$, $V_{\text{max}} = -2 \text{kV}$

典型的な計算では、セル数は 100x100=1 万で、1 セルあ たり 10~100 個の粒子を追跡した。1 ステップが 0.1 nsec の時間ステップで 10 μ sec 程度まで計算した。計算時間は Pentium4、2.0 GHz の Windows マシンで数時間から数日 である。

3.結果

<3-1 > 負のパルス電圧印加によるシース形成

PIC-MCCM モジュールを用いることで、電磁場中の荷電 粒子の動きが解析できるばかりでなく、非平衡低温プラズ マの解析が可能である[4]。PIII&Dにおいては、低ガス圧で 高密度のプラズマ中にターゲットを置き、これに負のパル ス高電圧を印加する。これにより、ターゲットの周囲にイ オンシースが出来、プラズマの電位は+10V 程度なので、シ ース端からのイオンが負の電圧を印加したターゲットに向 かって加速され、ターゲット表面に垂直にイオンが注入さ れる。プラズマ密度が高くなるとイオンシースは薄くなり、 形状に添った注入が可能となる。しかしながら、高アスペ クト比のトレンチや細孔内壁へのイオン注入は簡単ではな い。これを実現するためには、様々な条件下での、ターゲ ット周囲のシース形状、表面各位置におけるイオンのエネ ルギーと入射角を知ることが重要である。また、散乱イオ ンやスパッタ粒子がプラズマの状態を変えるので、これを 解析する事も必要で、PEGASUS はこれらの現象を全て含 めた解析を行うことが出来る。

シミュレーションで得られた電位、電子密度、イオン密度 の時間依存性を Fig.2 に示した。最大電圧は-2kV、Ar ガス 圧1mTorr、プラズマ密度は10¹⁰ cm⁻³ である。シースがタ ーゲット表面に添っているのは、印加した電圧が増加して いる間だけであることがはっきり分かる。同様のシミュレ ーションを印加パルス電圧の最大値が-5kV と-20kV に対し ても行った。ターゲット表面の平坦部 P₄ 点におけるシース 長の時間変化を Fig.3 に示した。図には、Child-Langmuir 則に基づく解析的な計算[17]結果も比較して示した。シミュ レーションの結果と解析的な結果との差の一因は、解析計 算では、ターゲットにパルス電圧を印加した事によって生 ずるプラズマ密度の変化等を考慮出来ない事にあるのでは ないかと思われる。さらに 107 cm-3の低密度プラズマに対し て得られた同様の比較を Fig.4 に示した。図にはターゲット に印加した電圧(最大-2kV)の時間依存性も示してある。 解析的な計算では、電圧印加を止めた後のシースの縮小は 求められないが、シミュレーションではそれが得られてい る。このような低密度プラズマではシースの長さは 10 cm を越えるが、そのような場合でもシミュレーションの結果 は解析的な結果とほぼ一致している。プラズマ密度10¹⁰ cm-3 の時、各時間において、ターゲット表面に到達するイオン

Fig.5. 表面に到達するイオン束の位置依存性。 Ion flux vs. position at different times. Ar gas pressure = 1 mTorr. Plasma density = 10¹⁰ cm⁻³

Fig.6. ターゲットに入射するイオン束の時間依存性 Time dependence of ion flux (average of outside surface) Ar gas pressure = 1 mTorr. Plasma density = 10^{10} cm⁻³ 東密度を Fig.5 に示した。横軸はトレンチの底の中心 (P_0) からの距離で、表面に添った距離である。 P_0 、 P_1 、 P_2 、 P_3 、 P_4 はそれぞれ Fig.1 に示した位置である。いずれの最大電 圧においても内側壁へのイオン東密度は低く、特に電圧が 最大電圧に達した後は、シースが広がってしまうために内 側壁に達するイオンはほとんどが無くなることが分かる。 この結果は Keller らの結果と一致している[18]。外側壁に 達するイオン東密度 (P_4 近傍、平坦部の平均)の時間依存 性を Fig.6 に実線で示した。Child-Langmuir 則に基づいた 解析的な計算で得られた結果を点線で示したがシミュレー ションの結果と良く一致している。表面に到達するイオン のエネルギー分布も求めたが、Ar ガス圧 1mTorr のこの計 算結果では、エネルギーはゼロまで広がっており、Fig.6 の 結果と合わせると、これは電圧印加の初期にシース内に存 在したイオンが注入される割合が多いためと考えられる。

<3-2 > グロー放電プラズマの発生

前節で示したシミュレーションは、外部プラズマ源で発生 した 10¹⁰ cm⁻³の高密度プラズマ中に置いたターゲットに負 のパルス電圧を印加した場合であったが、本節では、10⁷ cm⁻³の極低密度プラズマ中に置いたターゲットに負のパル ス電圧を印加した場合と正のパルス電圧を印加した場合の シミュレーションを行い、ターゲットの周囲に発生するプ ラズマ強度を比較した。

ターゲットの形は Fig. 1 に示したものと同じであるが、プ ラズマ容器の大きさは 2 倍にした。Ar ガス圧は 1 mTorr、

Fig.7. ターゲットへのパルス高電圧印加により発生するプラズマ。負電圧印加 (上図) と正電圧印加 (下図) Plasma generated by a negative and a positive pulse voltage applied to the target. Ar gas:1mTorr, plasma density (t =0): 10⁷ cm⁻³

最大電圧は±2 kV である。また、イオンによる容器壁及び ターゲット表面からの2次電子放出率をエネルギー20keV で0.3 並びに1.0 とした。本稿に示したのは1.0 の結果であ る。2次電子放出率はプラズマ強度に大きく影響するが空 間分布への影響はそれほど大きくない。負パルスの結果を Fig.7 上部に、正パルスの結果を Fig.7 下部に示した。正パ ルス印加により発生するプラズマの強度は負パルス印加に より発生するプラズマ強度より二桁ほど高いことが分か る。この差は、プラズマ容器の壁の面積とターゲットの表 面積の差に起因するのではないかと思われる。すなわち、 正電圧をターゲットに印加した場合は、ターゲット表面近 傍の狭い空間に電子が集中するので、その領域での原子と の衝突頻度が高くなり、プラズマ強度が強くなると考えら れる。

さらに、正パルス印加によりプラズマが発生した後に負パ ルスを印加する場合についてのシミュレーションも行っ た。この場合、負パルス印加によりプラズマ強度はさらに 増加することが分かった。引き続く負パルス印加によるプ ラズマ強度の変化の程度は、正パルスと負パルスの時間間 隔に当然依存する。また、1mTorrより低いガス圧の場合や、 窒素ガスでの同様のシミュレーションも現在行っており、 これらの結果はいずれ発表する予定である。

4.むすび

新しく開発したソフトウェア PEGASUS を用いて、プラ ズマイオン注入法(PIII&D)におけるプラズマ挙動の解析を 行った。この計算プログラムは PIII&D 法で用いられてい る様な低密度ガスのプラズマ解析の場合、電磁界中の荷電 粒子の運動の解析には PIC-MCC 法を用いている。また、 イオンとターゲット表面あるいは容器壁との相互作用の解 析には dynamic-SASAMAL を使っている。シミュレーショ ンにより、Ar プラズマ中に置いたターゲットに負のパルス 電圧を印加した際の電位、電子密度、及びイオン密度の空 間分布、並びにターゲット表面のイオン束密度を求めた。 平面部分で得られたイオンシースの時間発展は、Child-Langmuir則に基づいた解析的な計算結果と良く一致した。 また、平面ターゲット表面のイオン束密度の時間依存性に ついても Child-Langmuir 則に基づいた解析的な計算結果 と一致した結果が得られた。トレンチ型ターゲット表面に 到達するイオン束密度は、トレンチの内側壁で非常に弱い というシミュレーション結果が得られた。

バイポーラ PIII&D 法においては、正と負のパルス電圧を 交互にターゲットに印加する。1 mTorr 程度のガス圧で10⁷ cm⁻³ 程度の極めて低密度のプラズマ中においたターゲット に負のパルス電圧のみを印加してもターゲット電流は流れ ないが、先に正のパルス電圧を印加した後に負のパルス電 圧を印加した場合は、外部プラズマ源がなくても十分な強 さのターゲット電流が容易に得られ、プラズマイオン注入 が可能となる。計算機シミュレーションによってもこれら を裏付ける結果が得られた。すなわち、Ar プラズマ(1 mTorr、10⁷ cm⁻³)中においたターゲットに負のパルス電圧 を印加した場合プラズマはほとんど発生しないが、正のパ ルス電圧を印加した場合は、2桁以上も強いプラズマが発 生し、印加電圧を切った後もある時間持続する。PEGASUS は、電子・原子衝突による電離を考慮しているので、この ようなシミュレーションが可能である。

謝辞

本研究の一部は、原子力委員会の評価に基づき、文部科学 賞省原子力試験研究費により実施されたものである。

(平成14年10月25日受付)

文 献

- Y. Miyagawa M.Tanaka, H. Nakadate, S. Nakao, and S. Miyagawa: "Process Simulator for Plasma Enhanced Sputter Deposition System", Proc. of Int. Conf. on Ion Implantation Technology, 213 (2000).
- (2) R. W. Hockney, and J. W. Eastwood: *Computer Simulation using Particles* (McGraw-Hill, New York, 1981).
- (3) C. K. Birdsall, and A. B. Langdon: *Plasma Physics via Computer Simulation* (McGraw-Hill, New York, 1985).
- (4) C. K. Biersall, IEEE Trans. PlasmaSci. PS-19, 65 (1991).
- (5) V. Vahedi, M. Surendra: *Memorandum No. UCB/ ERL M94/* 72, Elec. Res. Lab., Univ. of California, Berkley (1994).
- (6) Y. Miyagawa, and S. Miyagawa, J. Appl. Phys. 54, 7124 (1983).
- (7) Y. Miyagawa, M. Ikeyama, K. Saito, G. Massouras, and S. Miyagawa, J. Appl. Phys. 70, 7289 (1991).
- (8) Y. Miyagawa, H. Nakadate, M. Tanaka, and S. Miyagawa, Surf. & Coat. Tech., 156, 87 (2002).
- (9) A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, (New York : Wiley, 2000)
- (10) S. M. Chen, R. M. Gwilliam, and B. J. Sealy, Rad. Eff. and Def. in Sol. 141, 149 (1997).
- (11) S. Miyagawa and Y. Miyagawa, "Deposition of Diamond-Like Carbon Film using Plasma Source Ion Implantation with Pulsed Plasma ", Proc. Mater. Res. Soc. Symp., 647, O11.7.1.(2001)
- (12) S. Miyagawa, S. Nakao, M. Ikeyama, and Y. Miyagawa, Surf. & Coat. Tech., 156, 322 (2002).
- (13) M. Hayashi, Institute of Plasma Physics Report No. IPPJ-AM-19, (1981)
- (14) D. Rapp, and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)
- (15) Y. Nakamura, Technical Paper of Electrical Discharge, IEE, ED-89-72 (1989).
- (16) A. Chutjian, and D. C. Cartwright, Phys. Rev. A23, 2178-2193 (1981)
- (17) J. R. Conrad, J. Appl. Phys. 62, 777 (1987).
- (18) G. Keller, S. Mandel, U. Rude, and B. Raushcenbach, Surf. & Coat. Tech. 177 (2001).