動的モンテカルロシミュレーションソフトウェア dynamic-SASAMAL

Simulation of Atomic Scattering in Amorphous MAterials based on Liquid model

宮川佳子・宮川草児

産業技術総合研究所 中部センター(名古屋) 基礎素材研究部門

1. はじめに

- 2. 計算モデルと計算方法
- 3. 研究への応用
- 4. まとめ

はじめに

"Dynamic-SASAMAL"は、イオン注入下における材料表層の 組成や損傷の深さ分布、スパッタ率の線量依存性を求めるた めに開発された2体衝突モデルによる<u>動的</u>モンテカルロシミュ レションプログラムである。

これを用いることにより、イオンが材料表面に入射した場合について、材料表層の元素組成や放射線損傷の深さ方向分布 やスパッタ率などが注入線量の増加に伴ってどのように変化 するかをシミュレートすることが出来る。

本プログラムをペガサスソフトウェア(株)の開発した2次元気 相解析シミュレータに組み込むことにより、プラズマプロセスを 統合して解析することの出来るプラズマ・気相解析統合シミュ レータ"PEGASUS"が完成した。

半導体製造技術、プラズマプロセス,真空技術における

(1)装置の設計・開発・改良・評価
(2)材料,デバイスの開発・製造
(3)プロセス技術の予測・開発・改良

の効率化,実験および試作コストの軽減を 目的とした支援シミュレータ

ZY. Miyagawa (AIST)

プラズマと固体表面との相互作用

成膜:ラジカル付着、イオン衝撃 スパッタリング:イオン衝撃 エッチング:エッチングガスの化学反応、 イオン衝撃

表面改質:イオン衝撃、電子衝撃

壁からの不純物混入: スパッタリング

> PECVD装置 エッチング装置 マグネトロンスパッタ装置 イオン注入装置 等

∕ Y. Miyagawa (AIST)

イオン・固体相互作用シミュレーション・コードの分類

2体衝突近似法			
非結晶 モンテカルロ法	結晶		
TRIM ACAT SASAMAL	MARLOWE Crystal-TRIM ACOCOT COSIPO XTOPS		
動的モンテカルロ法			
EVOLVE TRIDYN ACAT-DIFFUSE dynamic-SASAMAL			

分子動力学法

PARASOL, MD-TOPS MODYSEM, SPUT3 MOLDYCASK, MOLDY

2体衝突近似法(BCA)は、イオンと固体との相互作用を再 現する適切な物理的モデルを導入することによって、計 算時間を短縮している。これにより、BCA コードは、イ オン注入、放射線損傷、スパッタリング、表面散乱など のシミュレーションに使われ、成功してきた。

モンテカルロ法:非結晶ターゲットを取扱う2体衝突近 似コードでは、ターゲット原子の位置、衝突係数、ある いは、散乱角の決定に確率論的な手法を用いているので、 モンテカルロ法と呼ばれている。

動的モンテカルロ法:線量依存性を予測する。

元素組成の深さ分布、損傷の深さ分布、薄膜形成 選択スパッタリング等

SASAMALの計算モデル

If random number $< \sigma / s^2$, then a nuclear collision occurs. On the straight line from one collision to the next collision, the atom looses its kinetic energy through electronic interactions. <u>Nuclear collision</u> scattering function $d\sigma = \pi a^2 \frac{dt}{d\sigma^2} f(t^{1/2})$

$$2 t^{3/2}$$

 $f(t^{1/2}) = \lambda t^{1/2-m} \left[1 + (2 \lambda t^{1-m})^q \right]^{-1/q}$

Y. Miyagawa (AIST)

 $t = \varepsilon T/T_m$

<u>Electronic energy loss</u> Same as TRIM : Ziegler's equation

Parameters of the scattering function			
	λ	m	q
Thomas-Fermi(WSS)	1.309	0.333	0.667
Kalbitzer-Oetzmann	2.54	0.25	0.475
Lenz-Jensen	2.92	0.191	0.512
Moliere	3.07	0.216	0.530

6 200 keV N → Ti 5 1 MeV 窒素原子**濃**度(a.u.) *-* - -.3 MeV 4 3 2 1 0 2.5 1.5 2.0 0.5 1.0 0 深さ (µm)

入射エネルギーによる深さ分布の違い

イオン注入した元素濃度の深さ分布 核的相互作用によるエネルギー付与密度の深さ分布 電子的相互作用によるエネルギー付与密度の深さ分布

実験結果との比較

ヒストグラム:シミュレーションの結果 黒丸:ガス再放出法による実験結果

高線量イオン注入による材料表面改質

応用例	母材	注入イオン	改質性能 -
アルミ缶用パンチ、ダイス、ガラス繊維用カッター	工具綱	Ti+C	耐摩耗性
航空機用軸受	軸受綱	Cr	耐塩水腐食性
精密軸受、ギア、バルブ、ダイス	ステンレス網	Ti+C,Ta+C	耐摩耗性
人工骨、人工関節	ステンレス網	C,N,B	耐疲労強度
人工骨、人工歯根、手術器具	チタン合金	C、N	耐摩耗性、生体親和性
合成繊維押出し用スピナーレット	コバルト合金	Ta+Y	耐エロージョン性
人工骨、人工関節	コバルト・クロム合金	N,Pt,Au	耐溶出性、耐食性、生体親和性
ゴム、プラスチック射出成形用金型	アルミ合金	N . Mo	耐摩耗性、耐食性
計測用ブローブ、オリフィス、電極	ジルコニウム	N .	耐エロージョン性
原子炉部品、電極	ジルコニウム合金	Cr,Cr+C	耐フレッティング摩耗、耐高温水腐食
航空機用軸受、精密部品	ベリリウム合金	В	酎摩耗性、低摩擦性
スライドウェイ、バルブシート	硬質クロムめっき	N	表面硬化
マイクロドリル、歯科用ドリル	超硬	N	耐摩耗性、低摩擦性
エンジン・タービン部品	セラミックス	N, Al, Ti	耐酸化性、靱性
電子部品、容器	プラスチック	Ar	表面導電性、濡れ性

イオン注入による実用工具の耐摩耗性改善の例

区分	適用対象	材料	処理	結 果
I	紙切断機	1C-1.6Cr鋼	$8 \times 10^{17} \mathrm{N/cm^{2}}$	寿命2倍
	アセテートパンチャー	Cr めっき	$4 \times 10^{17} \mathrm{N/cm^2}$	製品の質向上
	プラスチック用タップ	HSS	$8 \times 10^{17} \mathrm{N/cm^2}$	寿命5倍
	合成ゴム切断機	WC-6%Co	$8 \times 10^{17} \mathrm{N/cm^2}$	寿命2倍
Π	工具插入物	4Ni-1Cr錮	$4 \times 10^{17} \mathrm{Co/cm}^2$	挿入物の汚染が
	成形工具	12Cr-2C鋼	$4 \times 10^{17} \mathrm{N/cm^2}$	凝着摩耗激減
Ш	銅棒用ダイス	WC-6%Co	5×10 ¹⁷ C/cm ²	処理能力5倍
	引き抜きダイス	WC-6%Co	$2 \times 10^{17} \mathrm{Co/cm}^2$	寿命改善
	鋼線用ダイス	WC-6%Co	$3 \times 10^{17} \mathrm{Co/cm}^2$	摩耗率%
	射出成形用金型	Cr めっき	$4 \times 10^{17} \mathrm{N/cm^{2}}$	摩耗率¼

I:切断に使う工具

Ⅱ:腐食,凝着摩耗の起こるもの

Ⅲ:大きな表面力が作用する引き抜き工具

ZY. Miyagawa (AIST)

金属表面に窒素イオンを高線量で 注入すると表面に窒化物セラミック ス層が形成される。

薄膜X線回折法による測定

AlへのNイオン注入 AlNの形成 Thin Film XRD : Cu-KX Ray, 40 keV, 20 mA. refering to ASTM card.

Zr**へのNイオン注入** ZrNの形成

Dynamic-SASAMALの 計算モデル

イオン衝撃によっておきる原子の再配列を記録する。 深さ方向に層状に内部を分割 二〉深さ分布が得られる

3次元で分割すれば、3次元の分布が得られるが計算時間は 長くなる。

イオン注入した窒素の深さ分布。 計算結果と核反応法による測定結果の比較

金属への高線量窒素イオン注入による窒化物表層形成^{FY. Miyagawa (AIST)}

ヒストグラム:シミュレーション結果 点約

点線:核反応法による測定結果

金属への高線量窒素イオン注入による窒化物表層形成^{FY. Miyagawa (AIST)}

ヒストグラム:シミュレーション結果 赤線:核反応法による測定結果

50 keV N into Zr 計算結果と核反応法による測定結果の比較

イオン注入した窒素の深さ分布。 飽和濃度 50% に達する前 イオン注入した窒素の深さ分布。 飽和濃度 50% に達した後

金属にイオン注入した窒素は飽和濃度以上には含有されず、それ以上の窒素は損傷濃度の高い表面方向に向かって拡散し、放出される。

イオンの注入量を増やしても窒素保有量には限界があり、それ以上は増えない。厚さにも限界がある。

各種金属に注入した窒素の保留量。 誤差範囲を付けたマークは核反応法による測定結果。

金属へのNイオン注入により形成されるセラミックス層の厚さ 入射エネルギーによって異なる。

Table 2. Saturation fluence and saturated thickness of nitrogenimplanted layer in titanium.N into Ti

energy	saturation fluence	saturated thickness	range in Ti(LSS theory)		
keV	x10 ¹⁷ N.cm ⁻²	(Å)	Rp(Å)	$\Delta Rp(Å)$	$Rp+\Delta Rp(Å)$
10	2.5	310	204	121	325
50	10	1250	914	384	1298
200	30	4100	3210	846	4056
500	50	8600	6440	1190	7630
1000	80	13000	10100	1450	11550

セラミックス層の厚さ = Rp + ∆Rp

Y. Miyagawa (AIST)

イオン注入した N¹⁵の深さ分布が 引続く N¹⁴の注入により変化する様子

核反応法による測定結果

シミュレーションの結果と実験結 果との比較

ZY. Miyagawa (AIST)

Y. Miyagawa (AIST)

Y. Miyagawa (AIST) Siへの多重エネルギー窒素イオン注入によるSi₃N₄層の形成

窒素イオンを注入しアニールした後、斜めに 切断したSi断面のAFM像

選択スパッタリングによる表面組成の変化 Surface composition change by 1keV Ar sputtering.

Y. Miyagawa (AIST)

選択スパッタリングによる 表面組成の変化(その2)

B₄CとWCの表面組成の変化

質量比の影響

質量の軽い元素が選択的にスパッタされる。

<u>プラズマ源イオン注入法によるDLC膜形成</u>

アモルファス炭素 (DLC) は、高硬度、低摩擦係数 そして、耐腐 食性の材料として良く知られている材料である。

しかしながら、広く産業界で用いられているにも関わらず、その膜 形成のメカニズムは未だに解明されておらず、その作成は経験に 頼っているのが現状である。

我々は、形成されつつある膜の表面にプラズマ中から到達するイ オンと中性ラジカルの比、及び入射するイオンのエネルギーが、 形成される膜中のsp³/sp²成分比と水素含有量にどのように影響 するかを、調べた。

Y. Miyagawa (AIST)

メタンプラズマの場合、主なイオンは CH₃+ イオンで、 ラジカルは CH₃* であると報告されている。

メタンプラズマによるDLC膜形成の模式図.

開発したdynamic-SASAMALコードは、二体衝突近似を用いた動的モンテカルロシミュレーションソフトウェアである。

Dynamic-SASAMALを使って得られた研究結果のいくつか を紹介した。

- 1) 金属への高線量窒素イオン注入による窒化物表層形成 2) イオンビームミキシング
- 3) ¹⁴Nと¹⁵Nの交互注入による注入窒素の挙動の解析
- 4) Siへの多重エネルギー窒素イオン注入によるSi₃N₄層の形成 5) 選択スパッタリング
- 6)アモルファス炭素(DLC)膜形成プロセスの解析

🖊 Y. Miyagawa (AIST)

<u>プラズマ・イオン注入・デポジション</u>

試料に負パルス高電圧を印加。

電子は動きが速いので試料周囲には電子のいないイオンシースが形成される。 プラズマの電位は数10V程度なのでシース端からイオンが試料表面に注入される。 イオンエネルギー:ガス圧が低くシース内でガス原子との衝突が起きなければ 印加した電圧x荷電数

シミュレーションの結果 Arプラズマ(0.1 mTorr, 10¹⁶ m⁻³)中においたトレンチ型の試料に負のパルス電 圧(最大電圧-500V)を印加した場合。

Example of pipe inner coating

1cm

4cm

Y. Miyagawa (AIST)

アスペクト比の大きな細長いパイプ

Particle distribution in **DC magnetron sputtering system**

(B) TIME = 37.555 msec, MAX = 0.7205 x10¹² atoms/cm³

まとめ

"Dynamic-SASAMAL"は、イオン注入下における材料表層の 組成や損傷の深さ分布、スパッタ率の線量依存性を求めるた めに開発された2体衝突モデルによる動的モンテカルロシミュ レションプログラムである。

これを用いることにより、イオンが材料表面に入射した場合に ついて、材料表層の元素組成や放射線損傷の深さ方向分布 やスパッタ率などが注入線量の増加に伴ってどのように変化し て行くかをシミュレートすることが出来る。

本プログラムをペガサスソフトウェア(株)の開発した2次元気 相解析シミュレータに組み込むことにより、プラズマプロセスを 統合して解析することの出来るプラズマ・気相解析統合シミュ レータ"PEGASUS"が完成した。